Course Content
Prerequisites for a Data Engineering
Preparing for a Data Engineering boot-camp can enhance your experience and success. Here are the core prerequisites:
0/2
Data Ingestion, Storage & Processing
Introduction to Data Engineering Overview of Data Engineering in modern architectures. Data lifecycle and pipelines. Key technologies and trends (e.g., ETL, ELT, Batch Processing, Streaming). Activity: Discuss a real-world data pipeline use case.
0/5
Data Ingestion Techniques
Understanding structured, semi-structured, and unstructured data. Batch ingestion: Using Apache Sqoop, Talend. Streaming ingestion: Using Apache Kafka.
0/5
Data Storage Solutions
Relational databases (e.g., MySQL, PostgreSQL) vs. NoSQL databases (e.g., MongoDB, Cassandra). Cloud-based data storage (AWS S3, Azure Blob Storage). Choosing the right storage based on use cases.
0/4
Batch Processing with Apache Spark
Understanding Spark architecture. Loading and transforming data using Spark. Difference between RDDs, DataFrames, and Datasets. Activity: Run a sample batch processing job using Spark on a dataset.
0/4
Data Transformation, Orchestration & Monitoring
Data Transformation & ETL Tools Understanding ETL vs ELT. Using ETL tools: Talend, Apache Nifi, or Airflow. Data cleansing and transformation concepts. Activity: Create a data pipeline with Talend/Airflow for a simple ETL process.
0/4
Data Orchestration
Introduction to orchestration tools: Apache Airflow, AWS Step Functions. Creating workflows to manage complex pipelines. Managing dependencies and retries in workflows.
0/1
Data Engineering

Activity: Set Up a Simple Data Ingestion Pipeline Using Kafka

To understand streaming ingestion practically, let’s set up a simple data ingestion pipeline using Kafka. Follow these steps:

Steps:

  1. Install Kafka: Download and set up Apache Kafka on your machine.
  2. Start Zookeeper and Kafka Broker:
    • Zookeeper: Handles Kafka’s distributed infrastructure.
    • Kafka Broker: Manages the messages/data streams.

bash

Copy code

# Start Zookeeper

bin/zookeeper-server-start.sh config/zookeeper.properties

 

# Start Kafka Broker

bin/kafka-server-start.sh config/server.properties

  1. Create a Kafka Topic:
    • Kafka topics are used to group related messages.

bash

Copy code

bin/kafka-topics.sh –create –topic user-activity –bootstrap-server localhost:9092 –partitions 1 –replication-factor 1

  1. Set Up Kafka Producers:
    • Create a producer that sends messages to the Kafka topic. For example, a Python script could simulate user activity.

python

Copy code

from kafka import KafkaProducer

import json

 

producer = KafkaProducer(bootstrap_servers=[‘localhost:9092’],

                         value_serializer=lambda x: json.dumps(x).encode(‘utf-8’))

 

for i in range(100):

    data = {‘user’: ‘user_’ + str(i), ‘action’: ‘click’}

    producer.send(‘user-activity’, value=data)

  1. Set Up Kafka Consumers:
    • Consumers read data from the Kafka topic for real-time processing.

python

Copy code

from kafka import KafkaConsumer

consumer = KafkaConsumer(‘user-activity’,

                         bootstrap_servers=[‘localhost:9092’],

                         auto_offset_reset=’earliest’,

                         enable_auto_commit=True,

                         value_deserializer=lambda x: json.loads(x.decode(‘utf-8’)))

 

for message in consumer:

    print(f”Received message: {message.value}”)

Diagram: Kafka Ingestion Pipeline

text

Copy code

[ Producer (Python Script) ] –> [ Kafka Topic: user-activity ]

                                          |

                                          v

                          [ Consumer (Processes the Data in Real-Time) ]

  • Conclusion

Data ingestion is fundamental to building data pipelines in any organization. Depending on the requirements, you can choose batch ingestion for processing large datasets at intervals or streaming ingestion for handling real-time data flows. By understanding tools like Apache Sqoop, Talend, and Apache Kafka, you can build robust data ingestion systems capable of processing structured, semi-structured, and unstructured data. Experimenting with Kafka, for example, provides hands-on experience with streaming ingestion, crucial for modern real-time data applications.

wpChatIcon
wpChatIcon